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a b s t r a c t

Thermally and hydrodynamically fully developed combined pressure-driven and electroosmotic flow
through a channel has been simulated for isoflux wall boundary conditions. Effects of asymmetries in
wall zeta potential and heat flux have been considered and closed form expressions have been obtained
for transverse distribution of electric potential, velocity and temperature. The results indicate that both
flow and heat transfer characteristics are significantly affected by the asymmetries in wall boundary con-
ditions for both purely electroosmotic and combined pressure-driven and electroosmotic flow. These
findings have important implications for flow and heat transfer control in microfluidics through alter-
ation of surface conditions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid flow and heat transfer at the microscale have received
considerable attention in the recent years owing to its increasing
application in heat sinks for microelectronic devices, microfluidic
applications like MEMS sensors, micropumps, microvalves and
lab-on-a-chip or bio-chip systems for drug delivery, chemical
analysis and biomedical diagnosis. Microfluidic devices mostly
incorporate microchannels through which fluid is transported.
Transport phenomena at the microscale reveal many features,
not observed in their macroscale counterparts. Consequently, fun-
damental issues related to fluid and thermal transport in micro-
channels need to be resolved for efficient design of microfluidic
devices.

Most solid surfaces carry electrostatic charge, i.e. an electric
surface potential. When a liquid containing a small amount of ions
is brought into contact with such a solid boundary, the charge on
the solid surface will attract the oppositely charged ions (coun-
ter-ions) in the liquid and repel the similarly charged ions (co-
ions). This leads to the formation of a region, known as electric
double layer (EDL), close to the wall containing excess counter-
ions. Within the EDL, the distribution of charge due to counter-ions
falls from the maximum value near the wall (characterized by
zeta-potential, f) to near zero at the axis. The thickness of the
EDL is characterized by the Debye length, kD.

The study of liquid flow in microchannels with consideration of
electrokinetic effects can be traced to 1960s. The early analytical
ll rights reserved.
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works on electroosmotic flow report the electrokinetically-driven
fully developed hydrodynamics of microchannels [1–3]. Yang et al.
[4,5] discussed hydrodynamically developing electro-osmotic flows
in channels. Ren and Li [6] investigated electrosomotic flows in
microchannels with axially non-uniform zeta potentials and varying
cross-sections. Patankar and Hu [7] and Dutta et al. [8] numerically
investigated electroosmotic flows in complex geometries.

The thermal issues of electrokinetic flows have been addressed
much more recently. Yang et al. [9] investigated forced convection
in rectangular ducts with electrokinetic effects. They investigated
the effects of streaming potential on flow and heat transfer. May-
nes and Webb [10,11] investigated thermally and hydrodynami-
cally fully developed flow and heat transfer in microchannels for
pure electroosmotic and combined pressure and electroosmosis-
driven flows. Maynes and Webb [12] concluded that viscous dissi-
pation effects are not important for fully developed electrokinetic
flows under typical operating conditions. Chen et al. [13] numeri-
cally investigated thermally and hydrodynamically developing
flows in microchannels flows. Chakraborty [14] and Zade et al.
[15] developed closed-form solutions for hydrodynamically and
thermally fully developed heat transfer in circular ducts and chan-
nels respectively for isoflux boundary conditions at the walls for
combined pressure-driven and electroosmotic flows. However,
Zade et al. [15] represented the effect of the EDL by a slip velocity
at the wall (Helmholtz–Smoluchowsky velocity), which limited
their analysis to thin EDL limit only. However, in case of solutions
with relatively low ionic concentration, such model becomes inva-
lid. Yang et al. [16] identified the factors leading to singularities in
Nusselt number for combined pressure-driven and electrokinetic
flows in channels. Jain and Jensen [17] considered fully developed
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Nomenclature

b channel half width (m)
c ion concentration
c0 concentration of ions in bulk fluid
Cp specific heat (kJ/kgK)
Ex electrostatic intensity (V/m)
F Faraday’s constant
G1 dimensionless pressure gradient
G2 dimensionless electric potential gradient
k thermal conductivity (W/mK)
p pressure (Pa)
q heat flux (W/m2)
qr q2/q1 (dimensionless)
R universal gas constant (kJ/kmol K)
sE volumetric heat source (kJ/m3s)
s�E dimensioless heat source (dimensionless)
T temperature (K)
u velocity (m/s)
U dimensionless velocity
U dimensionless mean velocity
x streamwise coordinate
y transverse coordinate
z valence number of ions in solution

Greek symbols
a thermal diffusivity (m2/s)
e fluid permittivity (C/V-m)
/ electrostatic potential (V)
U externally imposed electrostatic potential (V)
j Debye–Huckel parameter (dimensionless)
kD Debye length (m)
l viscosity (Pa-s)
h dimensionless temperature
qe charge density (C/m3)
w EDL potential (V)
w* dimensionless EDL potential
f* dimensionless f-potential
fr f2/ f1 (dimensionless)

Subscripts
1 surface 1
2 surface 2
m bulk value

2, q2 

1, q1 

2b 
X 

Y 

ζ

ζ

Fig. 1. Schematic of the configuration investigated.
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isoflux heat transfer in microchannels formed by parallel plates,
analyzing the flow and heat transfer within the EDL but did not
consider the effect of Joule heating. However, all these works
[9–17] considered identical electrostatic and thermal boundary
conditions for both the walls.

Analytical solutions for thermally developing combined pres-
sure and electrokinetically driven flows in microchannels have
been obtained by Dutta and coworkers [18–20] for a variety of wall
boundary conditions. But in all these works, slip velocity was as-
sumed at the wall, which limited the results to relatively wide
microchannels or high ionic concentration. Moreover, these works
also considered only symmetric boundary conditions.

In practical applications, a microchannel may be made of walls
(substrate and covering plate) of dissimilar materials and thus pos-
sesses different surface potentials on channel walls. With consider-
ation of the wall heating at asymmetric fluxes, the temperature
field and heat transfer performance can be strongly influenced by
the asymmetrical electric and thermal boundary conditions. Soong
and Wang [21] considered the effects of asymmetries in wall con-
ditions. However, in their analysis, they restricted themselves to
flow-induced streaming potentials only and did not consider elec-
troosmosis due to the effect of any externally applied electric po-
tential. The electro-osmotic flow can both aid and oppose the
pressure-driven flow while the flow-induced streaming potential
always has a retarding effect. The heat transfer modifications for
the two cases will be significantly different and hence the model
of Soong and Wang [21] cannot be used for investigating heat
transfer augmentation due to combined effects of pressure and
electric field gradients aiding each other. In addition, the present
work considers the effect of Joule heating due to flow of charges
induced by the external potential. This effect is shown to be
significant by Maynes and Webb [12] and Horiuchi and Dutta
[22]. Non-uniform distribution of zeta potentials is a common
technique for manipulating flow in microchannels. However, the
potential of manipulating the heat transfer characteristics of the
microchannel by using walls with dissimilar zeta potentials re-
mains to be investigated. Moreover, in many microelectronic sys-
tems, the heat generating components are placed unevenly on
the two walls and often on one wall only. Such configurations give
rise to asymmetric thermal boundary conditions. The objective of
the present work is to extend the earlier works on heat transfer
in microchannels with symmetric boundary conditions to asym-
metric boundary configurations. The earlier work of Soong and
Wang [21] can be considered as a special case of the present model.
The results of this investigation will give valuable insight to the ef-
fect of asymmetric wall conditions on the flow and heat transfer
characteristics that can be useful for active control of electrokinet-
ically driven flow and heat transfer.

2. Mathematical model

We consider flow through a microchannel of half-width b,
formed between two parallel plates (cf. Fig. 1). The flow is driven
by both pressure gradient and external voltage gradient. The major
assumptions of the flow are as follows.

1. The flow is laminar and thermally and hydrodynamically fully
developed.

2. The charge distribution follows Boltzmann distribution.
3. The liquid contains an ideal solution of fully dissociated sym-

metric salt.
4. The charge in the EDL follows Boltzmann distribution.
5. Wall potentials are considered low enough for Debye–Huckel

linearization to be valid.
6. The external voltage is significantly higher than the flow-

induced streaming potential.
7. Thermophysical properties are constant.
8. The channel walls are subject to constant heat flux.
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2.1. Electrical potential distribution

The electrical potential distribution is obtained from solution of
the Poisson–Boltzmann equation.

r2/ ¼ �qe

e
ð1Þ

The potential, / is due to combination of externally imposed
field, U and EDL potential, w.

Following Yang et al. [9], for fully developed flow through
microchannels, the Boltzmann distribution is valid for the charge
distribution.

cþ ¼ c0exp � zFw
RT

� �
; c� ¼ c0exp

zFw
RT

� �
ð2Þ

For an ideal solution of fully dissociated symmetric salt, the
charge density is given by [23]

qe ¼ Fzðcþ � c�Þ ¼ �2Fzc0sinh
zFw
RT

� �
ð3Þ

For fully developed flow, w = w (y) and the external potential
gradient is in the axial direction only, i.e., U = U (x). For a constant
voltage gradient in the x-direction, Eq. (1) becomes

d2w

dy2 ¼
2Fzc0

e
sinh

zFw
RT

� �
ð4Þ

Expressed in dimensionless form, the above equation becomes

d2w�

dY2 ¼
2F2z2c0

eRT

 !
b2sinhw� ð5Þ

In the above equation, the length variable has been scaled with
half-channel width, b and dimensionless EDL potential is defined
as w� ¼ zFw

RT .
The quantity 2F2z2c0

eRT

� ��1=2
is known as Debye length, kD. Defining

Debye–Huckel parameter, j ¼ b
kD

, we obtain

d2w�

dY2 � j2 sinh w� ¼ 0 ð6Þ

For small w*, we employ Debye–Huckel linearisation, Sinh
w* ? w*. The equation then becomes

d2w�

dY2 � j2w� ¼ 0 ð7Þ

The boundary conditions for the above equation are

Y ¼ �1 : w� ¼ f�1
Y ¼ 1 : w� ¼ f�2

ð8Þ

In the above equation, the zeta potential, f is non-dimensional-
ized as f� ¼ zFf

RT . The solution to the above equation is of the form

w� ¼ C1 expðjYÞ þ C2 expð�jYÞ ð9Þ

where

C1 ¼
f�1ðfrej � e�jÞ

2sinhð2jÞ

C2 ¼
f�1ðej � fre�jÞ

2sinhð2jÞ

ð10Þ
2.2. Velocity distribution

In the present model, we analyze the flowfield and the temper-
ature field both within the electric double layer and outside the
EDL in the bulk fluid. Consequently, we do not need to prescribe
the Helmholtz–Smoluchowsky slip velocity at the wall to account
for the electrokinetic effects. This makes the analysis applicable
over a wider range of microchannel dimensions and ionic concen-
trations. The use of no-slip boundary conditions has been justified
by Yang et al. [9] and Santiago [24]. For fully developed flow
through channel, subjected to pressure and electric potential gradi-
ents, the momentum equation becomes

ld2u

dy2 ¼
dp
dx
� qeEx ð11Þ

where the electric field in the x-direction, Ex is given by

Ex ¼ �
du
dx
¼ � dU

dx
ð12Þ

Using Eqs. (1) and (12) in Eq. (11), we obtain

ld2u

dy2 ¼
dp
dx
� e

d2w

dy2

dU
dx

ð13Þ

The characteristic velocity would be different for pressure-dri-
ven and electrokinetic flow. Since the objective of the present anal-
ysis is to cover the entire range of parameters from purely
pressure-driven flow to purely electrokinetic flow, we use a gen-
eral velocity scale, uref. The use of a general velocity scale allows
one to use the same expression for the combined pressure-driven
and electrokinetic flow as well as the special cases of pure pres-
sure-driven and pure electroosmotic flows. Moreover, this choice
allows one to independently vary the pressure and electric poten-
tial gradients by changing G1 or G2 alone. A similar velocity scale
has also been used by Jain and Jensen [17] and Soong and Wang
[21]. The exact value of this quantity would depend on the nature
of the flow. In dimensionless form, the momentum equation
becomes

d2U

dY2 ¼ G1 � G2w
� ð14Þ

In the above equation,

G1 ¼
b2

luref

dp
dx

and G2 ¼
2b2Fzc0

luref

dU
dx

ð15Þ

G1 and G2 refer to dimensionless gradients for pressure and
external electrical potential. With zero velocity at each wall, the
dimensionless velocity profile becomes

U ¼ G1

2
Y2 þ G2

j2 ðC1ejY þ C2e�jYÞ þ C3Y þ C4 ð16Þ

where

C3 ¼
G2

j2 ðC1 � C2Þ sinhj

C4 ¼ �
G1

2
þ G2

j2 ðC1 þ C2Þ cosh j
ð17Þ

The average velocity, defined as �U ¼ 1
2

R 1
�1 UdY , is obtained as

U ¼ G1

6
� G2

j3 ðC1 þ C2ÞSinhjþ C4 ð18Þ

The expressions for the potential, w* and velocity, U given by
Eqs. (9), (10), (16), and (17) agree with Eqs. (2) and (4) of [21]. It
may be noted that G2 in the present work corresponds to 2G2Es

in [21].
For the special case of purely electroosmotic flow, a suitable

choice of the reference velocity would be the Helmholtz–Smolu-
chowsky velocity, uHS ¼ ef1

l
dU
dx . The corresponding values of G1 and

G2 are given by G1 = 0 and G2 ¼ j2

f�1
. The velocity profile for this case

with same zeta potential on both walls is U ¼ 1� CoshðjYÞ
CoshðjÞ , which is

in agreement with that of Yang et al. [4,5]. Similarly, for purely
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pressure-driven flow, a convenient velocity scale can be the center-
line velocity, which gives G1 = �2 for which the velocity distribu-
tion is U = 1�Y2, the well-known Poiseuille profile [25].

2.3. Temperature distribution

The energy equation is given by

u
@T
@x
¼ a

@2T
@y2 þ

sE

qCp
ð19Þ

In the above equation, sE denotes the rate of volumteric heat
generation due to Joule heating. The channel walls are subject to
asymmetric heat fluxes, q1 and q2. For thermally fully developed
flows with isoflux walls, we have

@T
@x
¼ dTm

dx
ð20Þ

From global energy balance within the channel,

q�uCp
dTm

dx
:2b ¼ ðq1 þ q2Þ þ sE:2b ð21Þ

Expressing dimensionless temperature as h ¼ T�Tref
q1b=k , the dimen-

sionless energy equation becomes

d2h

dY2 ¼
U
U

1þ qr

2
þ s�E

� �
� s�E ð22Þ

In the above equation, s�E is the dimensionless volumetric en-
ergy generation term, given by s�E ¼

sEb
q1

.
The above equations are solved with the boundary conditions:

Y ¼ �1 :
dh
dY
¼ �1

Y ¼ 1 :
dh
dY
¼ qr

ð23Þ

The solution to the above equation is given by

h ¼ A

U

G1

24
Y4 � G2

j2

C1ejY þ C2e�jY

j2

� �
þ C3

Y3

6
þ C4

Y2

2

" #

� s�E
Y2

2
þ C6Y þ C7 ð24Þ

In the above equation, A ¼ 1þqr
2 þ s�E

� �
and the constant C6 is

given by

C6 ¼
qr � 1

2
þ A

2U

2G2

j3 ðC1 � C2Þcoshj� C3

� �
ð25Þ

An examination of Eqs. (10) and (25) reveals that the constant
C6 is contributed solely by the asymmetries in the wall conditions.
This is also evident from the temperature profile given by Eq. (24).
The constant C7 cannot be determined as both the boundary condi-
tions are of Neumann type. However, it will appear as an additive
constant at all locations. Hence, without loss of generality, we can
assume C7 to be zero as it will not affect the shape of the temper-
ature profile and gradients at the wall.

2.4. Nusselt number

For a thermally fully developed flow with isoflux boundary condi-
tions at the walls, the Nusselt numbers at the two walls are defined as

Nu1 ¼
1

h1 � hm
ð26aÞ

Nu2 ¼
qr

h2 � hm
ð26bÞ
In the above equations, hm refers to the dimensionless mixed
mean temperature that is defined as

hm ¼
1

2U

Z 1

�1
UhdY ð27Þ

Substituting the expressions for U, U and h, we obtain the value
of hm as

hm¼
1

2U

2K1
7 þ

2K3
5 þ

2K5
3 �2K7ðC1þC2Þ sinhj

j �2K8ðC1�C2Þ coshj
j � sinhj

j2

� 	
þ2K9ðC1�C2Þ 1

jþ 2
j3

� 	
sinhj� 2coshj

j2


 �
�2K10ðC1�C2Þ 1

jþ 6
j3

� 	
coshj� 3

j2þ 6
j4

� 	
sinhj


 �
�2K11ðC1þC2Þ 1

jþ 12
j3þ 24

j5

� 	
sinhj� 4

j2þ 24
j4

� 	
coshj


 �
þK12 C2

1þC2
2

� �
sinhð2jÞ

j þ4C1C2

n o

2
666666664

3
777777775

ð28Þ

The constants K1 to K12 are given in the Appendix.
3. Results and discussions

3.1. Special cases

At first, we check the accuracy of the derivation by retrieving
the solutions for purely pressure-driven flow and purely electroos-
motic flow for which the Nusselt numbers are known.

3.1.1. Pressure-driven flow
We obtain symmetrically heated purely pressure-driven flow

by assigning G2 = 0, s�E ¼ 0 and qr = 1. Substituting these values in
the expressions for K1 to K12 in the Appendix, we obtain
K1 ¼ � G1

16 ;K3 ¼ 7G1
16 and K5 ¼ � 3G1

8 . The remaining constants are
K7 = K8 = K9 = K10 = K11 = K12 = 0. Substituting these values in Eqs.
(24), (26), and (28), we obtain h1 ¼ h2 ¼ 5

8 and hm ¼ 39
280 and retrieve

the well-known value of Nusselt number of 2.058 for pressure-dri-
ven flows with isoflux walls [26].

3.1.2. Pure electroosmotic flow
For purely electroosmotic flow with symmetric boundary con-

ditions, G1 = 0, qr = fr = 1 and s�E ¼ 0. Using these values, the con-
stants K1 to K12 become K5 ¼ C2

4

2U
;K7 ¼ C4G2

Uj4 ;K9 ¼ � C4G2
2�Uj2 ;K12 ¼ G2

2

Uj6

and K1 = K3 = K8 = K10 = K11 = 0. Substituting these values, we get

hm ¼
1
6

C4

U

� �2

� C4

U

� �
tanh j

j3 1� tanh j
j


 �
� 2f�1G2

j2

C4

U

� �
1
j
þ 2

j3

� �
tanh j� 2

j2

� �
þ

2
j tanh jþ 2

cosh2j

4j2 1� tanh j
j

� 	2

For purely electroosmotic flow (G1 = 0) and symmetric bound-
ary conditions (fr = qr = 1), C4

U
¼ j

j�tanhj. For j ? /, practically the
whole of the channel lies outside the electric double layer. Conse-
quently the velocity profile resembles slug flow profile. In the limit
of j ? /, we obtain hm ¼ 1

6 and h1 ¼ h2 ¼ 1
2. This gives the Nusselt

number as 3, which corresponds to the value of Nusselt number
for thermally developed slug flow in channels with symmetric iso-
flux boundary conditions [26].

3.2. Field distributions

In the present simulation, the effects of asymmetric wall bound-
ary conditions are compared for three classes of flows: purely elec-
troosmotic, pressure-assisted and pressure-opposed flows. In the
simulations, the values of j, f1 and G2 are kept fixed at 5, 2.0 and
2.0 respectively unless otherwise stated. For water, these dimen-
sionless values imply a zeta potential of 50.4 mV, channel height
of 1.5–15 microns (assuming ionic concentration, c0 � 10�3–
10�5 M) and a potential gradient of 50 kV/m (assuming a reference
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velocity, uref = 1 cm/s). These values are representative of condi-
tions encountered in typical microfluidic applications [11,17,21].
The variables G1, fr, qr and s�E are varied parametrically to simulate
different flow and heat transfer configurations.
Fig. 2. Transverse distribution of (a) electrostatic potential (b) velocity (c)
temperature for purely electroosmotic flow (G1 = 0) at different fr.
Fig. 2 presents the transverse potential, velocity and tempera-
ture distributions for purely electroosmotic flows (G1 = 0). The
electrostatic potential for all these cases show identical distribu-
tions over major portion of the channel except close to the top
wall. Near the axis of the channel, the potential is close to zero.
This is the region outside the EDL at the walls. The value of De-
bye–Huckel parameter, equal to 5, implies that a significant por-
tion of the channel width is outside the EDL.

Fig. 2b presents the corresponding velocity distribution. We ob-
serve from the figure that the velocity profiles are considerably
modified by the alteration of the zeta potential at the top wall. This
observation has important implications in developing microfluidic
elements and achieving active control of these elements. Spatial
and temporal variations of wall potentials have recently been used
to achieve dynamic control of electrokinetic micromixers [27]. For
symmetric wall conditions, a plug-like velocity profile develops
outside the EDLs. As the zeta potential at the top wall increases,
the location of the peak value shifts towards the top wall. With in-
crease in the wall potential, the electrostatic force near the top wall
increases. This enables the fluid to attain the peak velocity closer to
the wall. Predictably, the volume flow rate increases with increase
in the wall zeta potential. At sufficiently large negative values of
the top wall zeta potential, flow reversal occurs near the top wall,
leading to a reduction in the volume flow rate. At fr = �1 (not
shown in the figure), the net discharge through the channel be-
comes zero.

Fig. 2c shows the corresponding temperature profile. The tem-
perature profile is represented in terms of difference with the tem-
perature at the axis. With decrease in the zeta potential at the top
wall, the velocity near the wall decreases, leading to an increase in
the temperature at that location. Consequently, the minimum tem-
perature is obtained below the axis closer to the bottom wall.

Fig. 3 shows the velocity and temperature profiles for pressure-
assisted flows. Predictably, with increase in the wall zeta potential,
the electrokinetic effect becomes stronger, leading to higher mass
flow rates through the channel. For fr – 1, the symmetry of the
velocity profile is lost and the peak velocity occurs away from
the axis. For fr = �1.0, a small region of flow reversal is observed
at the top wall.

Fig. 3b shows the corresponding temperature profiles. As the
asymmetry in the wall zeta potential increases, the difference be-
tween the temperatures at the two walls becomes more pro-
nounced and the location of the minimum temperature shifts
from the axis.

Fig. 4 shows the velocity and temperature profiles for pressure-
opposed flows. The impact of zeta potential ratio on the velocity
profile in this case is much more pronounced. For the values of
G1 and G2 considered here, the flow direction is determined pri-
marily by the pressure gradient. Consequently, for most of the
cases, the flow is in the negative direction. However, at the bottom
wall and for positive values of fr, flow reversal occurs.

Fig. 4b shows the temperature profiles for the same cases. For
fr = 1, the upper wall shows the highest temperature. The velocity
profile reveals that the magnitude of the flow near the top wall is
weakest for fr = 1. This explains the temperature values at the top
wall. For the same reason, in contrast with the pressure-assisted
flow, the minimum temperature occurs in the top half of the chan-
nel. A comparison with Fig. 3 also reveals that for positive values of
fr, the impact of elctrokinetic flows is more pronounced for pres-
sure-opposed flows. Similar lack of sensitivity of heat transfer
characteristics on electrokinetic parameters for fully developed
pressure-assisted electroosmotic flows has been reported by ear-
lier researchers [11].

Fig. 5 presents the effects of asymmetries in wall heat flux on
the temperature profiles for fr = 1 for both purely electroosmotic
and combined pressure-driven and electroosmotic flows. The



Fig. 3. Transverse distribution of (a) velocity (b) temperature for pressure-assisted
flow (G1 = �0.5) at different fr.

Fig. 4. Transverse distribution of (a) velocity (b) temperature for pressure-opposed
flow (G1 = 0.5) at different fr.
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temperature profiles are qualitatively similar in all the cases and
nearly identical for pressure-assisted and purely electroosmotic
flows. However, the effects are weaker for pressure-opposed flows,
particularly towards the lower wall. For qr = �0.5, the fluid loses
heat through the upper wall and the temperature profile is nearly
linear. For qr = �1 (not shown), the profile is exactly linear and
independent of flow parameters. For positive values of qr, as qr de-
creases, the location of the minimum temperature shifts towards
the top. For pressure-opposed configuration, the flow is weak near
the bottom wall. Consequently, the temperature profiles are less
affected by the flow parameters.

Fig. 6 shows the temperature profiles for different strengths of
volumetric heat source in the fluid for purely electroosmotic flows
and symmetric wall heat flux. In Fig. 6a, the results are for fr = 1.0.
At fr = 1, the temperature profiles are symmetric, with the mini-
mum temperature at the axis. With increase in the source strength,
the temperature difference between the wall and the axis in-
creases. As the source strength increases, this difference has to in-
crease to maintain the prescribed heat fluxes. This trend is present
in earlier works [10–12] also. The situation, here, is different from
that of isothermal walls, where with increase in heat source
strength, the interior temperature increases, leading to reduced
and, ultimately, negative temperature difference with the wall.
Fig. 6b presents the results for fr = 0.0. With increase in the
strength of the heat source, the temperature difference between
the two walls increases. The heat source is uniform across the
channel width. But the flow is weaker near the top wall leading
to a higher temperature. The temperature difference between the
walls and the axis increases with increase in source strength as
in the previous case. With less effective cooling in the top half, this
leads to larger positive and negative temperature differences be-
tween the top wall and the bottom wall respectively relative to
the axis.

Fig. 7 shows the temperature profiles for a source strength of
s�E=10 for pressure-assisted and pressure-opposed flows for
fr = 0.0 and 1.0. For fr = 0.0, the minimum temperature shifts away
from the axis. For pressure-assisted flow, the minimum tempera-
ture occurs below the axis while the location shifts to the other half
for pressure-opposed flows. For fr = 1.0, the minimum temperature
occurs at the axis.

Figs. 2–7 clearly show that the velocity and temperature pro-
files are significantly altered by the asymmetries in the boundary
conditions. This has important implications in many microfluidic
applications like mixing, particularly in presence of flow reversals.
As illustrated by Tian et al. [28], non-uniformities in zeta potentials
can be optimized to achieve trade-off between transport and mix-
ing. Although such flow reversals have also been observed in pres-



Fig. 5. Transverse distribution of temperature for (a) purely electroosmotic flow (b)
pressure-opposed flow at different qr.

Fig. 6. Transverse temperature distribution for purely electroosmotic flow at qr = 1
for (a) fr = 1 and (b) fr = 0 at different s�E.
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ence of opposing pressure gradient [16], the asymmetry in wall
zeta potential enables one to obtain much more varied flow config-
urations. In particular, by suitably choosing the wall zeta poten-
tials, it is possible to alter the velocity and temperature profiles
at the two walls without changing the bulk flow rate, leading to
variations in parameters like wall shear stress and heat transfer.
Fig. 7. Transverse temperature distribution for combined pressure-driven and
electroosmotic electroosmotic flow at qr = 1 for s�E = 10.
3.3. Nusselt numbers

The Nusselt numbers for pressure-assisted flows are presented
in Fig. 8 (G1 = �0.5). Fig. 8a shows the variation of Nusselt number
on the two walls for combined electroosmotic and pressure-driven
flows for s�E ¼ 0 and qr = 1.0. At high values of j (i.e., for wide chan-
nels), for all the cases, the Nusselt numbers at both the walls
asymptotically approach the value of 2.058. As the channel width
increases, the influence of electroosmotic flow diminishes and
hence for very wide channels (j ?1), the Nusselt number attains
the value for fully developed pressure-driven flows, irrespective of
the zeta potential ratio. At low values of j, however, the Nusselt
numbers at both the walls are very sensitive to both j and fr. At
fr = 1, the values of Nu1 and Nu2 are identical, as expected. This va-
lue first increases and then decreases with increase in j. As ex-
plained in Ref. [17], this variation is due to variation of the
difference between wall and bulk fluid temperatures. With aiding
electrokinetic flow, the electrokinetic effect always augments the
Nusselt number from the value for pressure-driven flows. For
fr > 1, the value of Nusselt number at the lower wall (Nu1)



Fig. 8. Variation of Nusselt number with Debye ratio for pressure-assisted flows
(a) qr = 1 and s�E = 0 (b) qr = 1 and s�E = 1 and (c) qr = 0.5 and s�E = 0.

Fig. 9. Variation of Nusselt number with Debye ratio for pressure-opposed flows
(a) qr = 1 and s�E = 0 (b) qr = 1 and s�E = 1 and (c) qr = 0.5 and s�E = 1.
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decreases with increase in fr while the Nusselt number at the other
wall shows the opposite trend. In presence of internal heat gener-
ation (Fig. 8b), the difference in the values of Nusselt number for
the two walls increases, especially for fr = �1. For asymmetric ther-
mal boundary conditions, the difference in Nusselt numbers at the
two walls is further magnified. In fact, due to increase in propor-
tion of heat input at the lower wall, the values of Nu1 are much
more sensitive to variations in electroosmotic parameters.

Fig. 9 shows the Nusselt numbers for pressure-opposed flows
(G1 = �0.5). In Fig. 9a, the results are presented for s�E ¼ 0 and
qr = 1.0. For this case, except for fr = �1, Nusselt number shows a
non-monotonic variation with Debye ratio, j. For fr = 0, with in-



Fig. 10. Velocity and temperature profiles for fr = 1, qr = 1 and s�E = 0 for pressure-
opposed flow (G1 = 0.5, G2 = 2.0).

Fig. 11. Velocity and temperature profiles for fr = 2, qr = 1 and s�E = 1 for pressure-
opposed flow (G1 = 0.5, G2 = 2.0).
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crease in j, Nusselt number at the top wall (Nu2) first decreases,
reaches a minimum, then increases, reaches a maximum and then
again decreases. For fr = 2, Nu2 shows the opposite trend. For both
these cases, Nu1 shows a reverse trend compared to that of Nu2.
With increase in the value of j, the importance of electrokinetic
flow decreases. Since the relative importance of electrokinetic flow
at the top and the bottom walls reverses at fr = 1, the effect of in-
crease in j is opposite at the two walls. The effects of internal heat
source and asymmetric thermal boundary conditions are illus-
trated in Fig. 9b and c respectively. From these figures, it is ob-
served that unlike the case of Fig. 9a, where Nusselt number
always remains finite, singularities in Nusselt number are observed
in these cases. Maynes and Webb [12] had also observed non-
monotonic behavior of Nusselt number for pressure-opposed
flows. But in their study involving only symmetric wall boundary
conditions, this was observed for high values volumetric heat
source. Yang et al. [16] also reported that singularities in Nusselt
number were obtained only within certain ranges of volumetric
heat sources. While Maynes and Webb [12] only reported the exis-
tence of singularities in Nusselt number at high values of source
strength and Debye ratio, Yang et al. [16] attributed the singularity
of Nusselt number to the equality of bulk mean temperature to
wall temperature due to the presence of heat sources. In Fig. 9b,
singularity in Nusselt number is observed for j � 4.47 and 5.07
for fr = 2 at the top wall (Y = 1). Within this range, the Nusselt num-
ber (Nu2) has negative values. Similar singularities are observed for
lower values of fr also. Fig. 9c indicates that the singularities in
Nusselt number become more pronounced with asymmetric heat
fluxes. The occurrence of singularities and negative Nusselt num-
bers can be explained with the help of velocity and temperature
profiles as discussed below.

The variation of Nusselt number with Debye ratio is explained
with the help of velocity and temperature profiles in Figs. 10 and
11. The velocity profiles for fr = 1 at different values of j are shown
in Fig. 10a. The corresponding temperature profiles for qr = 1 and s�E
= 0 are shown in Fig. 10b. The velocity profiles in Fig. 10a show that
with increase in j, the importance of pressure-driven flow in-
creases, which leads to flow reversal near the core. Although the
velocity profiles appear similar for 4.08 < j < 4.28, there is a signif-
icant difference in the bulk flow. For j = 4.08, there is a sizeable net
flow in the positive direction while for j = 4.28, the backflow in the
core region nearly balances the positive flow near the walls. This
results in a negligible bulk velocity. On the other hand, for j = 3
and 5, the flow is predominantly in the positive and negative direc-
tions respectively. The temperature profiles in Fig. 10b show that
even qualitatively similar velocity profiles result in significant vari-
ations in temperature profiles. For j = 3 and 5, the temperature
profiles are maximum at the walls and minimum at the centre.
However, for intermediate values of j, when the forward and
reverse flows are comparable, the temperature profiles show
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multiple inversions. The temperature inversions caused by strong
reverse flows result in bulk mean temperatures that are close to
wall temperatures, leading to high values of Nusselt number. How-
ever, the difference remains large enough such that Nusselt num-
ber remains bounded at all conditions. For the case of j = 4.28,
when the bulk velocity is close to zero, the bulk mean temperature
assumes a very high value, leading to a near zero value of Nusselt
number. Thus it is observed that the existence of strong reverse
flows in presence of asymmetric zeta potentials lead to non-mono-
tonic variation of Nusselt number in two ways. On one hand, re-
verse flow leads to temperature inversions within the channel,
lowering the difference between the wall and bulk temperatures.
This leads to very high values of Nusselt number. This behavior
prevails for situations where there is a significant bulk flow in
either forward or reverse direction. However, for configurations,
where the forward and reverse flows are comparable, leading to
negligible bulk flow, the smallness of the mean velocity leads to
a very high mean temperature, as is evident from the definition
of bulk mean temperature. The resultant Nusselt number is very
small.

Fig. 11 shows the velocity and temperature profiles for fr = 2,
qr = 1 and s�E = 1. Both the velocity and temperature profiles show
the expected asymmetries. Due to the presence of heat source,
hm � h2 for j = 4.47 and 5.07, leading to singularities in Nu2. At
j = 4.75, the corresponding temperature is a small negative num-
ber, which explains the corresponding large negative Nu2 observed
in Fig. 9b. The negative value of temperature is due to the heating
of the fluid within the channel beyond the wall temperature due to
the presence of internal heat sources. On the other hand, for
j = 5.45, the bulk velocity is very low. Correspondingly, h2 � hm is
large, leading to Nu2 � 0. Over this range of j, h1 � hm increases
with j, which explains the decrease in Nu1. The physical signifi-
cance of the singularity in Nusselt number is that one needs very
high heat transfer coefficient to achieve the prescribed heat flux
with small temperature differences. The negative Nusselt numbers
signify that heat is being transferred from the fluid to the wall due
to internal heating.

4. Conclusions

Combined pressure-driven and electrosmotic flow and heat
transfer have been analyzed in microchannels for constant heat
flux boundary conditions. Closed form expressions have been de-
rived for electrostatic potential, velocity and temperature distribu-
tions considering asymmetries in thermal and electrical boundary
conditions. The results indicate that both velocity and temperature
profiles are very sensitive to the asymmetries in boundary condi-
tions. The analysis shows that Nusselt numbers evaluated at the
walls are also strong functions of the asymmetries. These findings
have important implications for flow and heat transfer control in
microfluidics through alteration of surface conditions.
Appendix A. Appendix

The constants K1 to K12 in Eq. (28) are as follows:
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